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Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult
skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the
muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests
that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee
and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a
pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview
about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five
interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling,
and maturation/functional repair.

1. Muscle Regeneration Recapitulates
Many Aspects of Development

Regenerative potential, robust in lower vertebrates, is grad-
ually lost in higher vertebrates such as mammals [1–5].
Nevertheless, mammalian tissues, including skeletal muscle,
are capable of homeostasis and regeneration, partially reca-
pitulating the embryonic developmental program.

Muscle development and regeneration share common
features because the molecular program that underlines
prenatal development is reactivated for tissue reconstruction
after injury [6–8] (Figure 1). Regenerative medicine has
therefore gained important insights through the study of
developmental biology.

Skeletal muscles are derived from somites, which receive
signals, includingWnts, Sonic hedgehog, BMP-4, insulin-like
growth factor-1 (IGF-1), and noggin, from the neighboring
tissues that induce primordial muscle precursor cells to be
committed in a myogenic fate and to subsequently differenti-
ate into mature muscle [6] (Figure 1(a)).

The molecular basis of muscle development has been
successfully studied thanks to the gene targeting approach
in which the function of one or more myogenic factors was
altered either by producing animals lacking one or more
of the factor-encoding genes or by producing transgenic
animals in which a specific gene is overexpressed under the
control of a muscle-specific promoter.

The paired-domain transcription factors Pax3 and Pax7
act upstream of the primary myogenic basic helix-loop-
helix (bHLH) transcription factors (MyoD, Myf5, myogenin,
and MRF4), which are responsible for the induction of
the myogenic program. Pax3 is expressed in the presomitic
mesoderm and early epithelial somites [9, 10]. Gene targeting
approaches (Table 1) revealed that Pax3-deficient mice lack
the limb and diaphragm muscles [11–13], whereas Pax7, a
paralogue of Pax3, is induced during somite maturation, is
nonessential for embryonic muscle formation, and plays a
critical role for postnatal muscle formation [14–16]. Pax3
plays also a critical role in themigration ofmuscle precursors,
thus regulating the expression of c-Met [17], a factor involved
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Figure 1: Schematic representation of muscle formation during embryonic development and adult regeneration. (a) Developmental
myogenesis occurs in two distinct waves of differentiation that are characterized by a specific and sequential pattern of muscle-related
gene expression (red arrows). Skeletal muscles are derived from somites, which receive signals from the neighboring tissues, namely, axial
structures (neural tube and notochord), dorsal ectoderm, and lateral mesoderm that in turn induce the activation (blue arrows) of muscle
regulatory factors. Shh (from the notochord) andWnt1/3 andWnt11 and IGFs (from dorsal neural tube) signaling have been demonstrated to
regulate the expression of Myf5. Pax3 andMyf5 independently regulate MyoD expression, whereas Myf5 regulates the transient expression of
MRF4. Myf5 andMyoD independently activate the expression of Myogenin, which promotes the expression of Myosin. (b) Illustration of the
lineage progression of adult myogenesis duringmuscle regeneration, which recapitulates many of the cellular andmolecular aspects ofmuscle
development illustrated in panel (a). Environmental cues (Notch, IGF-1,Wnt, etc.) influence the activity of satellite cells (green arrows). Notch
and IGF-1 signaling stimulate the proliferation of satellite cells, whereas Wnt signaling is involved in the transition from proliferation to the
differentiation phase of myoblasts. Notch signaling is also necessary for the maintenance of the quiescent state of satellite cells. Depending on
MyoD activity, satellite cells can follow one of two fates: they may maintain Myf5 expression while downregulating MyoD and self-renewing;
alternatively, they maintain MyoD expression and differentiate. Quiescent satellite cells express Pax3 and Pax7. Pax7 regulates MyoD and
Myf5 expression (blue arrows). Myf5 regulates the expression of MyoD, which in turn promotes the expression of myogenin andMRF4 (blue
arrows). Myogenin promotes the expression of Myosin (blue arrows).

in the delamination andmigration of limb-muscle precursors
[18].

The four myogenic regulatory factors (MRFs) MyoD,
Myf5, myogenin, andMRF4 orchestrate an entire program of
muscle-specific gene expression when ectopically expressed
in nonmuscle cell types [19]. Functionally, the myogenic
bHLH factors act as heterodimers, interacting with ubiqui-
tous bHLH proteins, known as E-proteins, and with other
myogenic transcription factors, such as the members of MEF
family, which act in a combinatorial fashion to activate
muscle gene expression (reviewed in [20]).

Myf5 is activated first in the medial and epaxial somite
progenitors, which give rise to the deep backmuscles; Myf5 is
later activated in the lateral hypaxial somite cell progenitors,
which give rise to the limb, diaphragm, and bodywallmuscles
[21–24]. Muscle progenitor lineages that give rise to hypaxial
and limb muscles also activate the expression of MyoD
[25].

Gene targeting experiments (summarized in Table 1 and
reviewed in [19]) have revealed the specific contribution
of MRFs to muscle development and the establishment of
skeletal muscle cell commitment and differentiation. The
activation of MyoD/Myf5 represents the key step for the
commitment of multipotential somite cells to the myogenic
lineage; the disruption of both genes in the double knockout
MyoD-null/Myf5-nullmouse results in the absence of skeletal
myoblasts (Table 1) [19, 26]. Moreover, these studies indicate
that Myf5 has regulatory functions in muscle progenitor
specification, and MyoD has subsequent functions in muscle
differentiation (Figure 1(a)). In contrast,myogenin appears to
function downstream of Myf5 and MyoD and plays a critical
role in the terminal differentiation of myoblasts (Figure 1(a));
however, myogenin is also dispensable for establishing the
myogenic lineage (Table 1) [19, 27, 28].

The specific role ofMRF4duringmyogenesis is somewhat
more complex; however, its temporal expression pattern



Advances in Biology 3

Table 1: Gene-targeting of factors involved in muscle development.

Gene knockout Phenotype References

Pax3 Absence of the limb and diaphragm
muscles [11–13]

Pax7

(i) Normal muscle development
(ii) Satellite cells are progressively
lost postnatally because of apoptosis
accompanied by cell cycle defects

[15, 16, 140]

MyoD

(i) Viable without obvious defects
(ii) Increased expression of myf-5
(iii) Normal expression of
myogenin
(iv) Impaired regeneration

[182–184]

Myf5

(i) Muscle develops relatively
normally
(ii) Normal expression of myogenin
(iii) Hypertrophy and fibrosis in
adult life

[21, 29, 185–187]

Myogenin

(i) Die perinatally
(ii) Prevents muscle differentiation
(despite the continued expression of
MyoD)
(iii) Reduced muscle

[19, 27, 28, 188, 189]

MRF4
(i) Variable viability dependent on
targeting construct
(ii) No obvious muscle defects

[19, 20, 29, 190, 191]

MyoD and Myf5

(i) Die perinatally
(ii) Absence of skeletal muscle cells
(iii) Absence of myogenin
(iv) No markers of differentiation

[19, 26]

suggests potential roles in both muscle determination and
terminal differentiation [19, 20, 29]. The muscles of adult
mice express high levels ofMRF4, whereas myogenin,MyoD,
and Myf5 expression are reduced during postnatal life [30].
Interestingly, the expression of MyoD and myogenin mRNA
and protein are reactivated in the skeletal muscles of aged
animals [30, 31], and their expression pattern is similar to that
recorded in young adult denervated muscles, suggesting that
muscle aging could involve the denervation of myofibers.

Themyogenic program, as well as muscle regeneration, is
also regulated at epigenetic level. In proliferating myoblasts,
the ability of theMRFs to activate the differentiation program
is countered by the association of muscle regulatory regions
with histone deacetylases (HDACs) and corepressor com-
plexes, includingYY1 and polycombproteins, which preclude
premature muscle-gene expression by promoting histone
modifications [32].The class II histone deacetylases (HDAC4
and HDAC5) interact with MEF2 proteins and repress the
activation of transcription from promoters containing MEF2
sites [33]. The class I histone deacetylase HDAC1 associates
directly with MyoD, is capable of deacetylating MyoD in
vitro, and inhibits the ability of PCAF to enhance MyoD-
dependent transcription in cell culture experiments [20]. In
the adult, class IIa histone deacetylases together with PGC-
1𝛼 (peroxisome proliferator-activated receptor gamma, coac-
tivator 1 alpha) andNFAT (nuclear factor of activated T-cells)
control the slow myofiber gene expression program [34].

In particular, signaling by calcium/calmodulin-dependent
protein kinase (CaMK) and protein kinase D (PKD) induces
the phosphorylation of class IIa HDACs, which creates dock-
ing sites for the 14-3-3 chaperone protein, resulting in nuclear
export with the consequent activation of slowmyofiber genes
[34]. Additionally, HDAC9 has been shown to modulate the
response of skeletal muscle to motor innervations [34].

Recent studies have also revealed that myogenic tran-
scription factors control the expression of a group of microR-
NAs (miRNA or miR), which act through multiple mecha-
nisms to modulate muscle development and function [35–
37].

miRNAs are endogenous and ∼22 nucleotides long and
inhibit translation or promotemRNAdegradation by anneal-
ing to complementary sequences in the 3󸀠 untranslated
regions (UTRs) of specific target mRNAs [38]. MicroRNA
expression profiles are highly dynamic during embry-
onic development and in adulthood. The misexpression
of microRNAs can perturb embryogenesis, organogenesis,
tissue homeostasis, and the cell cycle [39].

Interestingly,manymiRNAs are expressed in a tissue-spe-
cific manner, and several miRNAs, such as miR-1, miR-133,
miR-214, miR-181, and miR-206, are specifically expressed in
skeletalmuscles [35–37].miR-214 is expressed during somito-
genesis and modulates the response of muscle progenitors to
Hedgehog signaling [35]. miR-1 and miR-133 modulate mus-
cle growth and differentiation by regulating serum response
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Figure 2: Schematic model outlining the different phases of muscle regeneration. Muscle regeneration occurs in five interrelated and time-
dependent phases (text in blue). The necrosis of muscle fibers activates a transient muscle inflammation, which is necessary for the removal
of necrotic cellular debris. Inflammation is followed by a regeneration phase that is characterized by the activation of stem cell populations
(satellite cells and other nonmuscle stem cells), which replace damaged myofibers. The fourth phase involves the remodeling of extracellular
matrix and angiogenesis. The muscle regeneration is completed by the reinnervation of regenerating fibers.

factor (SRF) andMEF2 activity and thus have distinct roles in
modulating skeletal muscle proliferation and differentiation
in cultured myoblasts in vitro [35–37]. miR-133 enhances
myoblast proliferation by repressing SRF [36, 40]. In con-
trast, miR-1 promotes myogenesis by targeting HDAC4, a
transcriptional repressor of muscle gene expression [36, 40].
Similar to miR-1, miR-206 also promotes skeletal muscle
differentiation through the negative regulation of DNA poly-
merase 𝛼 (polA1) translation, repression of cyclin-dependent
kinase 2 (Cdk2) activity and downregulation of connexin
43 [35]. miR-181 is upregulated upon differentiation and
stimulates muscle growth [35]. The activity and expression
pattern of different myo-miR suggests that miRNAs can play
roles in establishing a differentiated phenotype and suggests
a potential role for miRNAs in skeletal muscle regeneration
and diseases.

2. Muscle Regeneration: The Phase of
Necrosis and Inflammatory Response

Notably, most of the factors involved in muscle develop-
ment are activated during muscle regeneration (Figure 1(b))
[7, 8]. Muscle regeneration occurs in five interrelated
and time-dependent phases, namely, degeneration (necro-
sis), inflammation, regeneration, remodeling, and matura-
tion/functional repair (Figure 2). Although the phases of
muscle regeneration are similar in different organisms (e.g.,
mouse, rat, and human) and after different types of dam-
age/trauma, the kinetics and amplitude of each phase are
different in each organism and may depend on the extent of
damage and the damage model used.

One of the most frequently used and the easiest and most
reproduciblemethods to inducemuscle regeneration is based

on cardiotoxin (CTX) injection, a peptide that is isolated
from snake venoms and acts as protein kinase C-specific
inhibitor. CTX produces a local myonecrosis and stimulates
muscle regeneration [8, 41–44].

Necrosis involves the influx of calcium ions, the loss
of the plasmalemma, myonuclear, contractile material, and
cellular organelles dissolution, leading to amorphous debris.
Necrotic fibers appear pale and enlarged with altered internal
architecture and with the presence of internal nuclei, which
may reflect invasion by macrophages. Evans Blue Dye is an
in vivo evaluable marker of necrotic myofibers and can be
administered as an intravital dye into the tail vein ofmice and
identified macroscopically by the striking blue colour within
tissue, or observed by red autofluorescence in tissue sections
examined by fluorescence microscopy [45].

Necrotic cell death stimulates a host inflammatory
response (Figure 2).

The inflammatory response of injured skeletal muscle
plays an important and critical role in muscle homeostasis
and regeneration and involves the recruitment of specific
myeloid cell populations within the injured area [46–50].

Neutrophils represent the first inflammatory myeloid
cells that invade the site of muscle injury; the number of
neutrophils usually drops 24 hours after damage; neutrophils
are normally no longer detectable after 36–48 hours after
injury [51, 52] (Figures 2 and 3).

Neutrophils enter into damaged tissue by interacting with
adhesion molecules of vascular endothelial cells [53–57], a
process that is mediated by the interaction of a 𝛽2 integrin
on neutrophils with vascular ligands such as intracellular
adhesion molecule-1 [53, 55].

The phagocytic activity of neutrophils involves the release
of high concentrations of free radicals and proteases, as well
as the secretion of proinflammatory cytokines that stimulate
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Figure 3: Schematic diagram of time-dependent cellular response following cardiotoxin (CTX) injection. The relevant biological responses,
activated after CTX injection, are indicated. A few hours after cardiotoxin treatment, neutrophils infiltrate between the necrotic fibers, and,
by 24 hr after injection, the inflammatory response is characterized by neutrophil andmacrophage infiltration. At this stage, the phagocytosis
of necrotic myofibers is very active. During the second day after treatment, spindle-shaped mononucleated cells mixed with necrotic debris,
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The progressive maturation of regenerating myofibers occurs by 15 days.

the homing of other inflammatory cell populations, namely,
monocytes and macrophages [49] (Figure 2).

The production of soluble interleukin-6 receptor (sIL-6R)
by neutrophils regulates the change from a neutrophilic to a
mononuclear population.

Macrophages rapidly increasewithin 24 hours after injury
(Figure 3). They are the predominant inflammatory cell type
within the injured area and are detectable at the levels
of the perimysium and epimysium. Macrophages remove
tissue debris and activate stem cell populations [58–63]
(Figure 2). In a pioneering study, McLennan [61] described
different populations of macrophages with potentially dif-
fering activities: ED2+ and ED3+ resident macrophages,
which presumably do not possess phagocytic activity, are
abundant in uninjured muscles but are not present within
the degenerating fibers, while ED1+ cells are rarely observed
within the undamaged regions of the muscles but are abun-
dant in the perimysium between arterioles and degener-
ating fibers. Recent evidence supports a model according
to which the tissue macrophage subtype specification is
distinct from that of circulating monocytes [64]. Circulating
monocytes can be classified into at least two populations,
the CX

3
CR1loCCR2+Gr1+ “inflammatory” subset mono-

cyte, which is actively recruited to inflamed tissues, and
CX
3
CR1hiCCR2−Gr1−, which display an anti-inflammatory

function and invade the damaged tissue in a second wave
of infiltration to support tissue repair [65, 66]. Other evi-
dence supports the hypothesis that the inflammatory mono-
cytes are actually the only monocyte population that is
recruited in injured skeletal muscle; then they switch to anti-
inflammatory macrophages to support myogenesis [59, 67].
M1 and M2 nomenclature is usually used to refer to the two
extremes of a spectrum of possible forms ofmacrophage acti-
vation. In particular, it has been proposed that macrophages
develop into either type 1 inflammatory (M1) or type 2 anti-
inflammatory (M2) subsets and that macrophages sequen-
tially change their functional phenotype in response to

changes inmicroenvironmental influences (Table 2) [68].The
M1 phenotype expresses CD68 and is typically interleukin-
(IL-)12high and IL-10low [69–71], whereas M2 macrophages
express CD163 and are typically IL-10high and IL-12low [58, 69,
72] (Table 2). M1 macrophages are activated by the T-helper
(Th) 1 cytokines interferon-gamma (IFN-𝛾), tumor necrosis
factor-alpha (TNF-𝛼), lipopolysaccharide (LPS), IL-1, and IL-
6 [69] (Table 2). The M2 population is divided into three
possible subtypes: M2a, M2b, and M2c, each with diverse
physiological roles (Table 2). M2a are induced by exposure
to IL-4 and IL-13; M2b are induced by combined exposure
to immune complexes and toll-like receptors (TLR) or IL-
1R agonists; M2c macrophages are induced via IL-10 [69]
(Table 2). M2a and M2b macrophages exert immunoregula-
tory functions and drive type II responses, whereas M2c are
more related to the suppression of immune responses and
tissue remodeling [69] (Table 2).

What are the factors/signaling processes that mediate
macrophage polarization?

It has been demonstrated that IL-10 plays a central role
in regulating the switch of muscle macrophages from a
M1 to M2 phenotype in injured muscle in vivo, and this
transition is necessary for proper and efficient muscle growth
and regeneration [73]. The ablation of IL-10 amplified the
inflammatory response, causing increases in IL-6 and CCL2
while preventing the switch to CD163-positive and arginase-
1-positiveM2macrophages.This resulted in the accumulation
of muscle fiber damage and altered muscle regeneration and
growth [73].

Macrophage polarization is mediated by STAT protein
activity. STAT1 is an essential mediator of M1 macrophage
polarization in the presence of IFN-𝛾, whereas STAT6,
which is activated by IL-4 and/or IL-13, is required to drive
M2 macrophage activation [74]. The mutual exclusivity of
these signaling pathways could be a crucial factor in M1
versus M2 polarization and represents a potential target for
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Table 2: Characteristics of macrophage subtypes.

Subset of
macrophages

Factors driving
macrophages
polarization

Molecules expressed by polarized macrophages Functional properties of
polarized macrophages

M1 IFN-𝛾 + LPS,
TNF𝛼

TLR2, TLR4, CD16, CD32, CD64, CD80,
CD86, IL-12, IL-23, TNF-𝛼, IL-1, IL-6, Type I
IFN, IL-1RI, IL-15Ra, IL-7R, CXCL9, CXCL10,
CXCL11, CCL2, CCL3, CCL4, CCL5, CXCL8,
CXCL16, CCR7, COX2, iNOS, and miR-26-2

Proinflammatory properties,
phagocytosis, and cytotoxic
and antitumoral properties

M2a IL-4, IL-13
CD163, CD23, CD302, CD209, IL-10 Decoy
IL-1RII, CCL17, CCL22, CCL24, CXCR1,
CXCR2, miR-193b, and miR-222

Anti-inflammatory properties
and immunoregulatory
functions drive type II
responses

M2b IC + TLR CD163, IL-10, CCL1, miR-27a, miR-222,
miR29b-1, and miR-132

Anti-inflammatory properties
and immunoregulatory
functions drive type II
responses

M2c IL-10
CD163, scavenger receptor A and B, CD14,
CCR2, CCL16, CCL18, CXCL13, CD204, and
CD206

Suppression of immune
responses and tissue
remodeling

IC: immune complexes; IFN-g: interferon-g; LPS: lipopolysaccharide; TLR: toll-like receptor; COX2: cyclooxygenase 2; TNF𝛼: tumour necrosis factor; iNOS:
inducible nitric oxide synthase; Interleukin-: IL-.

the modulation of macrophage polarization for therapeutic
purposes.

In a recent work,Mounier et al. [75] documented the crit-
ical role of a master regulator of energy homeostasis, namely,
AMPK𝛼1, in macrophage skewing. AMPK𝛼1 is the only
catalytic subunit of AMPK that is expressed in macrophages
[76]. Using various genetic mouse models, the authors
reported that the ablation of AMPK𝛼1 expression resulted in
(i) the accumulation of necrotic tissue after damage, (ii) a
delay in the disappearance of phagocytosed myofibers, (iii)
a deficit in the acquisition of the M2 macrophage phenotype,
and (iv) impaired skeletal muscle regeneration [75].

Gene knockout experiments were supported by the phar-
macological inhibition of AMPK activity: wild-type macro-
phages treated with an inhibitor of calcium/calmodulin-
dependent protein kinase 2 (CAMKK2), which is an up-
stream activator of AMPK, also failed to switch to anM2 phe-
notype following the phagocytosis of apoptotic myoblasts.

Thus, AMPK𝛼1 is crucial for M1 to M2 macrophage
skewing, which is necessary for a proper regenerative process
[75–78].

Epigenetic mechanisms are also implicated in macro-
phage polarization [79], and the role of miRNAs in regulating
macrophage activation in response to different environmen-
tal cues has been defined. It has been reported that M2
macrophages express greater levels of miR-125a-5p than do
M1 macrophages [80]. The overexpression of miR-125a-5p
diminished the M1 phenotype expression induced by LPS
but promoted the M2 marker expression induced by IL-4
[77]. In contrast, the knockdown of miR-125a-5p promoted
M1 polarization, while diminished IL-4 induced M2 marker
expression [80]. Moreover, miRNA let-7c is expressed at a
higher level in M2 than in M1 macrophages [81].

In the context of “functional” regeneration, M2 ma-
crophages appear soon after M1 macrophages and play

an important role in deactivating M1 macrophages [59].
Under pathologic conditions, it is possible that the M1
macrophage influx is accompanied by the contemporaneous
invasion of M2a macrophages. This is the case for muscular
dystrophy [82, 83], in which the simultaneous recruitment of
M1 and M2a macrophages may reduce the muscle damage
caused by M1 macrophages. Moreover, Villalta and cowork-
ers [83] reported that the selective deactivation of the M1
phenotype in a dystrophic mdx animal model was associated
with reduced expressions of IL-6, monocyte chemoattractant
protein-1 (MCP-1), interferon-gamma-inducible 10-kDa pro-
tein (IP-10), and iNOS, which mediate the cytotoxicity of M1
macrophage population [83]. In contrast, arginase-expressing
M2a macrophages can reduce muscle cell damage caused by
M1 macrophages in mdx dystrophy, improving satellite cell
proliferation [83].

Thus, the inflammatory response is a coordinate pro-
cess that must be finely regulated to obtain an efficient
regenerative process, and the perturbed spatial distribution
of inflammatory cells, altered identity of the inflammatory
infiltrate (cell type and magnitude of influx), and disrupted
temporal sequence result in a persistent rather than resolved
inflammatory phase [84].

3. The Phase of Regeneration,
Remodeling, and Maturation

The regenerative capacity of the skeletal muscle is guaranteed
by an intrinsic mechanism that restores the injured contrac-
tile apparatus.

The dominant role in muscle regeneration is played by
the muscle stem cells known as satellite cells [85, 86], which
reside between the basal lamina and sarcolemmaofmyofibers
and were described as “dormant myoblasts that failed to
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fuse with other myoblasts and are ready to recapitulate the
embryonic development of the skeletal muscle fibers when
the main multinucleate cell is damaged” [85]. Thus, satellite
cells are mitotically quiescent until required for growth or
repair.

Satellite cells are activated in response to both physio-
logical stimuli (such as exercise) and pathological conditions
(such as injury and degenerative diseases) to generate a
committed population of myoblasts that can either fuse
with existing myofibers, repairing damaged muscle fibers, or
alternatively fuse to each other to form new myofibers [87]
(Figure 4). A smallminority does not differentiate but instead
reenters quiescence to maintain the stem cell pool [88].

The discovery of molecular markers selectively expressed
by satellite cells but not by muscle fibers has contributed to
the characterization of these markers (Figure 4). It has been
reported that c-Met [89], M-cadherin [90], FoxK [91], Pax7
[15], NCAM[92], syndecan 3 and 4 [93], CD34 [94], caveolin-
1 [95], Sox 8 [96], Sox 15 [97], VCAM-1 [98], integrin 𝛼7
[99], 𝛽1 integrin [100], calcitonin receptor (CTR) [101], lamin
A/C [99], emerin [99], Hey1, and Heyl [102] are expressed by
quiescent satellite cells, and their expression increases once
satellite cells are activated and proliferated [86] (Figure 4).
Pax3, the paralog of Pax7, is also expressed in quiescent
muscle satellite cells in a subset of muscles. Pax3 plays an

important role in regulating the entry of satellite cells into the
myogenic program [103, 104].

The relevant markers of proliferating satellite cells, which
are silent in quiescent satellite cells, are desmin, Myf5, MyoD,
and PCNA [86, 105, 106] (Figure 4). In particular, aMyf5 pro-
moter activity has been demonstrated in resident satellite cells
using the knock-in Myf5nLacZpos [94, 107, 108]. However,
Myf5 protein expression has not been detected in quiescent
satellite cells, but it is expressed in proliferating progeny and
its expression decreases when satellite cells differentiate; thus,
the Myf5 protein is not detected upon differentiation and
fusion into myotubes [101, 109]. Once activated, satellite cell
progeny can follow one of two fates depending on MyoD
activity. Satellite cells may downregulate MyoD and self-
renew, guaranteeing the maintenance of a pool of quiescent
Pax7pos satellite cells. Alternatively, satellite cells maintain
MyoD expression but downregulate Pax7 and activate myo-
genin expression, thus committing to differentiation [110–113]
(Figure 2).

The transition from cell proliferation to differentiation
involves the downregulation of proliferative-associated genes
and cell-cycle withdrawal [107, 109, 114] (Figure 4).

A key role in asymmetrically segregated transit-ampli-
fying cells is played by Notch, Numb, and Wnt. Numb
has been demonstrated to promote myogenic differentiation,
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thus inhibiting Notch signaling in one daughter satellite
cell [115–120]. A recent work revealed that Numb is also
necessary for satellite cell-mediated repair because Numb-
deficient satellite cells have an unexpected proliferation defect
due to an upregulation of myostatin [121].

The onset of differentiation is due to a transition from
Notch signaling to Wnt signaling in myogenic progenitors,
and this crosstalk occurs via GSK3beta, which is maintained
in an active form by Notch but is inhibited by Wnt [122, 123].

Recent studies have uncovered a novel function for
Notch signaling in the regulation of cellular quiescence in
adult muscle stem cells [118? ]. Notch signaling has been
demonstrated to be necessary for the maintenance of the
quiescent state and for muscle stem cell homeostasis, and
it has been suggested that Hes1, Hey1, and HeyL, which are
downstream targets of Notch signaling, are good candidates
to mediate the Notch regulation of satellite cell maintenance
by preventing their differentiation [118? ]. It is likely that
Notch signaling can act either to promote or to block the
cell cycle progression depending on the cellular context. This
divergent behavior of Notch activity could depend on the
level of Notch activity and/or the activation of other pathways
that may interact with and influence Notch signaling.

The transition from proliferation to differentiation results
in the activation of specific markers (Figure 4), including
myogenin, neonatal isoform of myosin heavy chain (MyHC),
slow-twitch skeletal muscle troponin T (Tnnt1), cardiac and
slow-twitch skeletal muscle Ca2+-ATPase (Atp2a2), insulin-
like growth factor-2 (IGF-2), fibroblast growth factor receptor
4 (Fgfr4), nicotinic cholinergic receptor alpha polypeptide 1
(Chrna1), and cardiac/slow-twitch skeletal muscle troponin
C (Tncc) [124].

Specific epigenetic events are also required to establish
andmaintain themyogenic identity in quiescent satellite cells
and to enable the proper response to external cues once mus-
cle stem cells are activated and exposed to the regenerative
environment (for review [125]). miR-1 and miR-206 facilitate
satellite cell differentiation by restricting their proliferative
potential [40]. In particular, miR-206 is restricted to differ-
entiating satellite cells and plays the crucial role of repressing
Pax7 [126]. More recently, quiescence-specific miRNAs have
been identified in the satellite-cell lineage [127]. Among these,
miRNA-489 is highly expressed in quiescent satellite cells
and is quickly downregulated during satellite cell activation,
whereas satellite cells that lack a functional miRNA path-
way spontaneously exit quiescently and enter the cell cycle
[127].

Satellite cells are generally considered to be a homoge-
neous population of committed muscle progenitors [128].
However, several studies have raised the possibility that
satellite cells are a heterogeneousmixture of two populations,
namely, slow-cycling stem cells and fast-cycling committed
myogenic progenitors [113, 129–132], and have indicated that
the asymmetric division in the satellite cell niche is the
mechanism for generating these two different populations
[116]. In particular, it has been demonstrated that Pax7-
positive satellite cells that lack Myf5 expression have a “stem-
like” phenotype within the satellite cell population, whereas

Pax7-positive satellite cells expressing Myf5 were more fre-
quently committed to a muscle fate [116].

More recently, satellite cells have been demonstrated to
divide predominantly via asymmetric chromatid segregation,
generating a daughter cell that carries the mother DNA and
retains stem cell properties and a daughter cell that inherits
the newly synthesizedDNA and acquires themyocyte lineage
[133]. Using transgenic approaches, Rocheteau et al. [133]
identified two different populations of Pax7-positive cells,
Pax7Hi and Pax7Lo. Pax7Hi quiescent stem cells constitute a
metabolically low “dormant” subpopulation and selectively
segregate old DNA strands to the renewing stem cell. With
asymmetric chromatid segregation, a dividing mother stem
cell synthesizes new DNA during S-phase and generates two
daughter stem cells, one carrying only the mother DNA,
which is the true stem cell, and the other only the newly-
synthesized DNA [134].

Different studies also clarified the controversial observa-
tions about the dominant role of Pax3 or Pax7 on satellite
cell specification and activation [15, 104, 135, 136]. It has
become clear that satellite cells are present, although in
reduced numbers, in the absence of Pax7 and that these
cells retain their myogenic potential [135], suggesting that
Pax3 alone is responsible for their initial presence in the
Pax7 mutant after birth. However, in the absence of Pax7,
satellite cells are progressively lost postnatally because of
apoptosis accompanied by cell cycle defects [104], suggesting
that Pax7 plays an antiapoptotic function in activated satellite
cells.

Recent studies using inducible Cre/loxP conditional gene
inactivation have reported contradictory evidence regarding
the role of Pax7 in satellite cells and muscle regeneration.
It has been demonstrated that Pax7 is only required up to
the neonatal period (between 7 and 11 days postnatally)
[136]. Surprisingly, when Pax7 was inactivated in adult mice,
mutant satellite cells were not compromised in muscle regen-
eration; they could proliferate and reoccupy the sublaminal
satellite niche and were able to support further regenera-
tive processes [136]. This normal regenerative capacity of
conditional Pax7 mutants sharply contrasts with the severe
defects observed in Pax7 knockout mice [15, 135, 136] and
indicates the possibility of adult-specific compensation by
Pax3. Surprisingly, muscle regeneration was not impaired
in Pax3/Pax7 doubly inactivated muscles, suggesting that,
contrary to their essential roles in embryonic myogenesis,
neither Pax3 nor Pax7 is required during adult muscle
regeneration [136]. Conversely, recentworks by vonMaltzahn
et al. [137] and by Günther et al. [134] demonstrated that Pax7
is an absolute requirement for satellite cell function in adult
skeletal muscle because Pax7 null satellite cells andmyoblasts
exhibit cell cycle arrest and the dysregulation of myogenic
regulatory factors.

There could be various reasons for these discrepant
results: (a) in the Lepper et al. study [136], muscle regener-
ation was assayed within 10 days after injury, thus addressing
the short-term effects of Pax7 inactivation. (b) It has been
observed that the ablation of Pax7, reported by Lepper et al.
[136], is incomplete because the Pax7loxP-Le allele showed
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remaining transcriptional activity, which could confer a
residual biological activity [134].

In conclusion,muscle regenerationwas severely impaired
when Pax7 expression was ablated in most satellite cells,
causing an alteration in the maintenance of the satellite cell
pool, which was most likely due to premature differentiation
at the expense of proliferation [134].

It has been suggested that other “nonmuscle” stem cell
populations can participate in muscle regeneration and in
some way contribute to maintain the pool of satellite cells
(reviewed by Messina et al. [138]). These stem cell popu-
lations could either reside within muscle or be recruited
via the circulation in response to homing signals emanating
from the injured skeletal muscle. These populations include
endothelial-associated cells [139], interstitial cells [140–145],
and bone marrow-derived side population cells [146, 147].

Two recent reports have described the identification
of muscle-derived interstitial cells, which are mesenchymal
progenitors [148]. These interstitial cells are referred to as
fibroadipocyte progenitors (FAPs) based on their high Sca1
expression [149] or PDGF receptor alpha (PDGF-R-alpha)
expression [150], respectively.

In resting muscles, the interaction with intact myofibers
has been demonstrated to prevent the conversion of FAP into
fibroadipocytes [149]. However, under physiologic regen-
erative stimuli, paracrine factors are produced that pro-
mote satellite cell-mediated regeneration [151]. In contrast,
in degenerating muscles, such as dystrophic muscles at
advanced stages of disease, these cells turn into fibroad-
ipocytes, whichmediate fat deposition andfibrosis [149], con-
tributing to the exacerbation of the dystrophic hostile mi-
croenvironment.

This suggests that a qualitative microenvironment is
necessary to physiologically instruct stem cells and that an
altered niche negatively influences stem cell commitment and
differentiation.

The remodeling of connective tissue and angiogenesis
defines the fourth stage of the regenerative process [44,
150, 152, 153] (Figure 2). This stage is characterized by the
activation of the extracellular matrix (ECM), resulting in
the overproduction of several types of collagens, fibronectin,
elastin, proteoglycans, and laminin [150], which serve to
stabilize the tissue, to act as a scaffold for the new fibers, and
to guide the formation of neuromuscular junctions (NMJs)
[154].

Although the entire process of fibrosis formation is
poorly understood, transforming growth factor-𝛽1 (TGF-
𝛽1) has been identified to be a key factor in activating the
physiological fibrosis cascade in injured skeletal muscle [155].
This fibrotic response is initially beneficial because it is quick,
adds support for strength, and helps protect the injury site.
However, the overproduction of collagens within the injured
area often leads to heavy scarring and the loss of muscular
function.

The reparative process is completed when injured my-
ofibers rescue their functional performance and contractile
apparatus [44] (Figure 2).Thus, the regeneration of damaged
or diseased muscles is only beneficial if the regenerated
muscles become effectively innervated. Within two weeks of

damage, newly formed NMJs between the surviving axons
and the regenerated muscle fibers can be identified. Of
note, while the initial phases of muscle regeneration do not
necessary depend on neural influence, the subsequent growth
and maturation of regenerating muscle fibers require the
presence of the nerve because nerve activity can directly
influence protein turnover and gene expression withinmulti-
nucleated regeneratingmyotubes and indirectly influence the
proliferation and differentiation of satellite cells [156–158].
The role of the nerve in controlling the maturation of regen-
erating innervated myofibers can be monitored by analyzing
the expression of different myosin heavy chain (MyHC)
isoforms. Regenerating muscle fibers initially express devel-
opmental MyHC forms, such as embryonic and neonatal
MyHCs (Figure 3), and later on adult fast and slow MyHC
forms [159–161].

4. Muscle Regeneration Is Affected in
Aging and Muscle Diseases

Muscle regeneration is affected in several pathologic condi-
tions.

The functional performance of skeletal muscle tissues
declines during postnatal life and is compromised in different
diseases due to an alteration in muscle fiber composition,
atrophy, and an overall decrease in muscle integrity as
fibrotic invasions replace functional contractile tissue [162–
165]. Despite no conclusive evidence, it is becoming more
widely accepted that the chronic nature of the inflammatory
response to tissue damage is a key driver of the fibrotic
response in diverse organs and tissues. Thus, chronic inflam-
matory response and fibrosis create a hostile microenviron-
ment that inhibits the physiological activity of stem cells and
could interfere with muscle regeneration.

The potential critical role of the microenvironment on
stem cell biology and therapy is underlined by recent studies,
including those by us.

Heterochronic experiments have demonstrated that old
muscle successfully regenerates when transplanted in a young
animal, whereas the regeneration of young muscle trans-
planted in an old host is impaired [166, 167]. This hypoth-
esis has been clearly validated in parabiotic experiments,
demonstrating the rejuvenation of aged progenitor cells by
exposure to a young systemic environment [168]. These
results emphasize the importance of the environment, which
is created by circulating factors and by the local secretome
of factors secreted by satellite cells, the newly differentiating
fibers, as well as by the inflammatory cells [169, 170].

In a recent work, we demonstrated that satellite cells
display a delayed response to activating stimuli and show
a reduced proliferative response to their environment when
this environment was suboptimal [171]. We demonstrated
that aged satellite cells did not display major defects in
the propensity to fuse when differentiating under standard
conditions, namely, in DMEM supplemented with 5% horse
serum [171]. In contrast, muscle differentiation was dra-
matically reduced when old satellite cells were cultured in
autologous serum (isochronic culture conditions), whereas
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the differentiative capacity of aged satellite cells was rescued
when differentiated in heterologous/heterochronic serum
(from young donors) [171].

Paliwal and coworkers [172] reported that age-dependent
increases in the levels of osteopontin (OPN) inhibit skeletal
muscle regeneration. The transient upregulation of OPN
after muscle injury has been demonstrated to play a posi-
tive role in overall regeneration [173]; however, in cultured
myoblasts, OPN has been shown to inhibit cell migration
and differentiation [174] as well as muscle regeneration
in mdx mice [175]. Paliwal et al. [172] demonstrated that
OPN is elevated in the blood serum of old mice and only
if these animals are injured, suggesting that this cytokine
can potentially deregulate regenerative responses and can
represent a systemic molecular marker of altered muscle
regeneration. Notably, the regeneration of old injured muscle
was significantly enhanced by the neutralization of OPN,
and young intramuscular CD11b+ macrophage injection also
enhanced the myogenic responses of old satellite cells in the
presence of old myofibers and old serum, suggesting that the
secretome of young inflammatory cells is capable of negating
the inhibitory influence of old stem cell niches [172].

In another work, by analyzing both muscle morphology
and function in aged and transgenic dystrophic animal
models, we observed a significant decrease in myonecrosis
and a reduction in fibrosis in mice overexpressing the local
formof IGF-1 (mIGF-1) [43, 176].Moreover, we demonstrated
that the local expression of mIGF-1 transgene accelerates the
regenerative process of injured skeletal muscle, modulating
the inflammatory response and limiting fibrosis [44]. At the
molecular level, mIGF-1 expression significantly downregu-
lated proinflammatory cytokines, such TNF-𝛼 and IL-1𝛽, and
modulated key players of the inflammatory response, such as
macrophagemigration inhibitory factor (MIF), highmobility
groupprotein-1 (HMGB1), and transcriptionNF-𝜅B [44].The
rapid restoration of injured mIGF-1 transgenic muscle was
also associated with connective tissue remodeling and a rapid
recovery of functional properties.

Wehling et al. [177] reported that the depletion of
macrophages in themdxmousemodel at the early, acute peak
of muscle pathology produced large reductions in lesions
in the plasmalemma of muscle fibers, showing that muscle
macrophages that are present during the acute, degenerative
stage of mdx dystrophy are highly cytolytic and that they
play a central role in the pathogenesis of muscular dystrophy
[178]. Additionally, Villalta and coworkers [83] reported that
arginase-expressingM2amacrophages can reduce themuscle
cell damage caused by M1 macrophages in mdx dystrophy,
improving satellite cell proliferation.

These data suggest that, by modulating the inflammatory
response and reducing fibrosis, it is possible to create a qual-
itatively different environment for sustaining more efficient
muscle regeneration and repair.

However, an important issue is whether agedmuscle stem
cells are in some way intrinsically defective in responding
to regenerative stimuli. This question has been addressed by
two recent studies [179, 180]. It has been demonstrated that
geriatric age induces intrinsic alterations in the functions of
muscle stem cells, which cannot be rejuvenated by a young

host environment [179].The authors found that the dominant
factor that induces geriatric processes in satellite cells is the
master regulator of senescence p16INK4a (Cdkn2a). Thus,
p16INK4a silencing restored satellite cell quiescence, whereas
ectopic p16INK4a expression in quiescent young satellite cells
prevented their activation [179].

In another study, Cosgrove and collaborators [180]
demonstrated that the intrinsically defective capacity of
geriatric muscle stem cells to efficiently respond to a young
recipient muscle microenvironment depends on the elevated
activity of the p38𝛼 and p38𝛽 mitogen-activated kinase
pathway. The transient inhibition of p38𝛼 and p38𝛽 in
geriatric muscle stem cells promoted their rapid expansion
and rejuvenated their potential for regeneration [180].

In summary, the alteration in muscle regeneration,
observed in different pathologic conditions, can be due to
intrinsic alterations that render muscle stem cells defective in
responding to regenerative stimuli and to a hostile microen-
vironment that inhibits stem cell activity [181].
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